Cross-Dimensional Weighting for Aggregated Deep Convolutional Features

نویسندگان

  • Yannis Kalantidis
  • Clayton Mellina
  • Simon Osindero
چکیده

We propose a simple and straightforward way of creating powerful image representations via cross-dimensional weighting and aggregation of deep convolutional neural network layer outputs. We first present a generalized framework that encompasses a broad family of approaches and includes cross-dimensional pooling and weighting steps. We then propose specific non-parametric schemes for both spatialand channel-wise weighting, that boost the effect of highly active spatial responses and at the same time regulate burstiness effects. We experiment on four public datasets for image search and unsupervised fine-grained classification and show that our approach consistently outperforms the current state-of-the-art by a large margin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Two-Dimensional Convolutional Neural Network for Brain Tumor Detection From MRI

Aims: Cancerous brain tumors are among the most dangerous diseases that lower the quality of life of people for many years. Their detection in the early stages paves the way for the proper treatment. The present study aimed to present a two-dimensional Convolutional Neural Network (CNN) for detecting brain tumors under Magnetic Resonance Imaging (MRI) using the deep learning method. Methods & ...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

Adaptive Co-weighting Deep Convolutional Features For Object Retrieval

Aggregating deep convolutional features into a global image vector has attracted sustained attention in image retrieval. In this paper, we propose an efficient unsupervised aggregation method that uses an adaptive Gaussian filter and an elementvalue sensitive vector to co-weight deep features. Specifically, the Gaussian filter assigns large weights to features of region-of-interests (RoI) by ad...

متن کامل

Aggregating Deep Convolutional Features for Image Retrieval

Several recent works have shown that image descriptors produced by deep convolutional neural networks provide state-of-the-art performance for image classification and retrieval problems. It has also been shown that the activations from the convolutional layers can be interpreted as local features describing particular image regions. These local features can be aggregated using aggregation appr...

متن کامل

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016